博客
关于我
【计算机科学】【2018.08】在深度学习领域中推进分割和无监督学习
阅读量:244 次
发布时间:2019-02-28

本文共 599 字,大约阅读时间需要 1 分钟。

在大尺寸和多模态图像领域,深度学习方法的创新性研究

近年来,深度学习模型在各类任务中带来了显著的改进,引起了广泛关注。然而,这些进步在很大程度上是在有标签的监督环境下实现的,最初的研究重点也主要集中在传统的计算机视觉任务上,如视觉对象识别。

针对大尺寸和多模态图像的特殊应用需求,以及标记训练数据获取的难度,相关领域的研究相对鲜有。我的研究基于以下两个主要方面进行填补:首先,提出专门针对遥感和医学成像应用的分割方法;其次,结合医学影像等高影响领域缺乏标记数据的特点,提出四种无监督深度学习任务:领域适应、聚类、表征学习和零镜头学习。

在分割任务中,我们解决了类别不平衡、缺失数据模式和遥感不确定性建模等关键问题。基于像素连通性的思想,我们进一步开发了一种新型显著性分割方法,这是一个常见的预处理任务。通过将其建模为连通性预测问题,我们在保持模型简洁性的同时,取得了良好的性能。

此外,我们还开发了一种在医学成像领域中的无监督域自适应方法。研究中,我们引入了核方法思想与信息理论学习相结合的聚类方法,取得了显著成效。基于对数据表示的直觉,我们设计了一个核心化的自动编码器。最后,我们针对零镜头学习任务,提出了一种基于改进图卷积神经网络的知识传播方法,在21K类ImageNet数据集上实现了最佳性能。

这些研究成果为大尺寸和多模态图像处理提供了新的解决方案,也为医学影像分析领域带来了重要技术进步。

转载地址:http://cqap.baihongyu.com/

你可能感兴趣的文章
Node响应中文时解决乱码问题
查看>>
node基础(二)_模块以及处理乱码问题
查看>>
node安装卸载linux,Linux运维知识之linux 卸载安装node npm
查看>>
node安装及配置之windows版
查看>>
Node实现小爬虫
查看>>
Node提示:error code Z_BUF_ERROR,error error -5,error zlib:unexpected end of file
查看>>
Node提示:npm does not support Node.js v12.16.3
查看>>
Node搭建静态资源服务器时后缀名与响应头映射关系的Json文件
查看>>
Node服务在断开SSH后停止运行解决方案(创建守护进程)
查看>>
node模块化
查看>>
node模块的本质
查看>>
node环境下使用import引入外部文件出错
查看>>
node环境:Error listen EADDRINUSE :::3000
查看>>
Node的Web应用框架Express的简介与搭建HelloWorld
查看>>
Node第一天
查看>>
node编译程序内存溢出
查看>>
Node读取并输出txt文件内容
查看>>
node防xss攻击插件
查看>>
noi 1996 登山
查看>>
noi 7827 质数的和与积
查看>>